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Abstract. We consider a T-shaped, one-dimensional quantum waveguide containing an attractive or re-
pulsive impurity in the lateral stub, and study how the resonance poles move in the complex k-plane when
the strength or the position of the defect changes. Similarities and differences with respect to standard
potential scattering problems are highlighted.

PACS. 73.63.Nm Quantum wires – 73.23.Ad Ballistic transport – 72.10.Fk Scattering by point defects,
dislocations, surfaces, and other imperfections (including Kondo effect)

1 Introduction

Electronic transport in ultra-small semiconductor struc-
tures has inspired a lot of experimental and theoretical
work in the last several years [1,2]. In high-purity materi-
als and at low temperatures, the electron’s motion is bal-
listic, and gives rise to quantum interference effects, which
can be studied as a quantum transmission problem [2,3]. It
has been found that mesoscopic devices may exhibit sharp
transmission minima, which can be interpreted as reso-
nance phenomena, with a Fano-type line shape. In par-
ticular, two–dimensional quantum wave guides coupled to
a T-stub resonator have attracted considerable attention
(see, for instance, references [4–7] and references quoted
therein). Much as in atomic physics, the Fano resonances
occurring in the transmission coefficient of quantum wires
can be interpreted as due to the coupling of a quasi-bound-
state with a continuum of states.

Electron’s transport in two-dimensional structures,
and the occurrence and features of Fano resonances have
been investigated both theoretically and numerically in
the past several years employing different techniques,
ranging from the Green’s function [4,8–10] to the trans-
fer [5] and scattering matrix [11,12] approach. While these
2D models have reached by now a considerable level of so-
phistication, useful insights can be still obtained through
simple, one-dimensional calculations, when the transverse
dimension of the wire is small enough. In such a case, in-
deed, the electron’s motion in the transverse direction is
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confined in the lowest-energy subband, and one can limit
oneself to consider the electron’s dynamics in the propa-
gation direction only. Fano resonances in one-dimensional
quantum waveguides coupled to a stub have been consid-
ered by Shao et al. several years ago [13,14]. By studying
the scattering amplitude for these systems in the complex
energy plane, they have been able to show that the res-
onances are associated to zero-pole pairs, which lead to
sharp variations of the transmission coefficient with en-
ergy.

In references [13,14] the location of the resonance poles
has been determined for an empty stub, or for a stub cou-
pled weakly to the principal wire, because of the presence
of a repulsive barrier at the point where the wire and the
sidearm join together. As a natural extension of this anal-
ysis, one can study how the pole location of the scattering
matrix and the transmission properties of the device are
affected by a change in the strength or the position of a po-
tential field inside the stub. A quasi-one-dimensional sys-
tem of this type represents a schematic model of a stubbed
quantum wave guide, in presence of a defect or of an ex-
ternal bias in the attached cavity.

From a more general point of view, the above anal-
ysis of the scattering operator for a stubbed wave guide
can be regarded as the extension to quasi-one-dimensional
systems of well-known results of standard potential scat-
tering theory [15,16]. For finite-range potentials, or po-
tentials decreasing at infinity faster than any exponen-
tial, one has exhaustive information about the location of
the S-matrix poles in the complex energy or momentum
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plane [16,17]. In particular, a by now text-book example
is provided by s-wave scattering by a spherical potential
well [15,16]. As the strength of the interaction becomes
more and more negative, the poles of the S-matrix move
in pairs in the fourth and third quadrant of the momentum
plane, emerging with an infinite imaginary part, until each
pair coalesces on the negative imaginary axis, to originate
a double pole. Beyond this point, one has an anti-bound
state pole moving downward and a pole moving upward
on the imaginary axis; the latter reaches finally the posi-
tive imaginary axis, to become a pole associated to a new
bound state of the interaction. In our opinion, it is worth
to ascertain to what extent these features of the scatter-
ing operator survive when the interaction acts inside a
quasi-one-dimensional system.

We evaluate the scattering operator for the stubbed
wave guide in correspondence to a realistic, smooth poten-
tial in the sidearm. To this end, we approximate the poten-
tial by a series of square wells or barriers, depending upon
the sign of the strength, and write the total transfer ma-
trix for the stub as the product of partial transfer matri-
ces, which can be expressed in simple, analytic form. The
poles of the device S-matrix occur in correspondence to
the zeros of a simple function of the stub transfer matrix.
We determine numerically these zeros, thereby getting the
pole trajectories in the complex momentum plane as the
strength or the position of the defect potential changes.
Thus, our numerical experiments allow one to get insight
into the response of the system to changes in its dynam-
ical or geometrical features; at the same time, one can
exhibit similarities and differences between a scattering
problem defined on a quasi-one-dimensional system, and
what happens in standard potential scattering theory.

The formalism needed to get the total S-matrix is out-
lined in Section 2. The outcome of our calculations is pre-
sented in Section 3, while a brief summary of our results
and conclusions are given in Section 4.

2 Evaluation of the scattering matrix

We shall consider the T-stub structure shown in the in-
set of Figure 1. It consists of an infinitely long, straight
perfect wire, with a dangling sidearm of length L. The
sidearm may contain a defect, described by a model po-
tential, located in the region l1 ≤ y ≤ l2. If the wires
are thin enough, one can describe the device through a
simple one–dimensional model. The wave function in the
principal wire can then be written as a superposition of
incoming and outgoing plane waves. On the left of the
branch point one has

ψL (x) = −→c Le
ikx +←−c Le

−ikx, (1a)

where the wave number k is related to the electron’s
energy E and effective mass m∗ by the usual relation
k =
√

2m∗E/�. Similarly, on the right of the branch point

ψR (x) = −→c Re
ikx +←−c Re

−ikx. (1b)

Fig. 1. Position of the n = 0 pole on the imaginary axis for
−150 ≤ Ṽ0 ≤ 150. The potential f(ỹ) is a double Woods-Saxon
with geometric parameters l̃1 = 0.1, l̃2 = 0.3, and ã = 5×10−3.
The dot marks the pole position in the unperturbed case Ṽ0 =
0. The inset gives a schematic picture of the considered T-stub
device, having a sidearm of length L with a defect between
y = l1 and y = l2.

We shall assume that the defect potential becomes van-
ishingly small outside the region l1 ≤ y ≤ l2, so that one
has incoming and outgoing plane waves for 0 ≤ y ≤ l1,
and l2 ≤ y ≤ L, whereas there will be distorted waves in
the region where the potential acts, namely

ψS1(y) = c↑S1
eiky + c↓S1

e−iky 0 ≤ y ≤ l1, (2a)

ψD(y) = c↑Dϕ(y) + c↓Dφ(y) l1 ≤ y ≤ l2, (2b)

ψS2(y) = c↑S2
eiky + c↓S2

e−iky l2 ≤ y ≤ L. (2c)

The wave functions in the main wire and in the stub have
to match smoothly at the junction. The continuity of the
solution of the Schrödinger equation requires that

ψL(x = 0) = ψS1(y = 0) = ψR(x = 0), (3)

while current conservation can be guaranteed provided
that the derivatives of the wave functions satisfy the con-
dition [18,19]

ψ′
L(x = 0) = ψ′

S1
(y = 0) + ψ′

R(x = 0). (4)

A straightforward calculation yields the linear relations

−→cL +←−cL = c↑S1
+ c↓S1

, (5a)
−→cR +←−cR = c↑S1

+ c↓S1
, (5b)

and −→cL −←−cL = c↑S1
− c↓S1

+−→cR −←−cR, (5c)

among the ingoing and outgoing amplitudes.
Equations (5) have to be supplemented with matching

conditions at y = l1 and y = l2 between the wave functions
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ψS1(y), ψD(y), and ψS2(y), together with the condition
that ψS2(y) vanishes at y = L. The latter requirement
implies

c↑S2
= −e−2ikLc↓S2

, (6)

while, equating the logarithmic derivatives at y = l1 and
y = l2 one has(

c↑S1

c↓S1

)
=

(
M

(S1|D)
11 M

(S1|D)
12

M
(S1|D)
21 M

(S1|D)
22

)(
c↑D

c↓D

)
, (7a)

(
c↑D
c↓D

)
=

(
M

(D|S2)
11 M

(D|S2)
12

M
(D|S2)
21 M

(D|S2)
22

)(
c↑S2

c↓S2

)
, (7b)

where the matrices M(S1|D) and M(D|S2) are defined ac-
cording to

M
(S1|D)
j1 ≡ 1

2

[
ϕ(l1)− (−1)j 1

ikϕ
′(l1)

]
e(−1)jikl1 , (8a)

M
(S1|D)
j2 ≡ 1

2

[
φ(l1)− (−1)j 1

ikφ
′(l1)

]
e(−1)jikl1 , (8b)

and

M
(D|S2)
1j ≡ (−1)j−1ikφ(l2)− φ′(l2)

2W (φ , ϕ)
e(−1)j−1ikl2 , (9a)

M
(D|S2)
2j ≡ ϕ′(l2) + (−1)jikϕ(l2)

2W (φ , ϕ)
e(−1)j−1ikl2 , (9b)

with j = 1, 2. Here, W (φ, ϕ) ≡ φϕ′ − ϕφ′ denotes the
Wronskian of the two linearly independent solutions φ(y)
and ϕ(y), i.e, of the incoming and outgoing wave functions
in the defect region. The operators M(S1|D) and M(D|S2)

represent the partial transfer matrices between the empty
regions and the region occupied by the defect in the stub.

Equations (7a) and (7b) can be combined together to
express the amplitudes c↑S1

and c↓S1
linearly in terms of the

pair c↑S2
, c↓S2

through the stub transfer matrix

M(s) = M(S1|D)M(D|S2). (10)

Using equation (6) to write the wave amplitudes at the
junction as functions of c↑S2

, and solving the matching con-
ditions (5a), (5b), and (5c) with respect to the outgoing
waves ←−c L and −→c R one finally gets the total scattering
operator S for the device, namely(←−cL

−→cR

)
=

(
S11 S12

S21 S22

)(−→cL
←−cR

)
, (11)

where (
S11 S12

S21 S22

)
≡

 D2−D1

3D1+D2

2(D1+D2)
3D1+D2

2(D1+D2)
3D1+D2

D2−D1
3D1+D2


 , (12)

and the quantities D1 and D2 are given in terms of the
stub transfer matrix by

Dj ≡ 2
(
M

(s)
j2 − e−2ikLM

(s)
j1

)
, j = 1, 2. (13)

The matrix elements S11 and S21 represent the reflec-
tion and transmission amplitudes, respectively, for an elec-
tron’s wave impinging from the left on the stub, while
S22 and S12 are the corresponding quantities for a wave
incoming from the right [1,2]. Equation (12) exhibits the
symmetry of the scattering operator ensuing from the
time-reversal invariance of the system, and allows one to
evaluate the transmission coefficient T = |S21|2 of the de-
vice, once the stub transfer matrix M(s) is known. As for
the latter, the non-trivial part of the calculation is the
evaluation of the wave functions φ(y) and ϕ(y).

For a generic potential V (y) = V0f(y), a simple way
to evaluate the stub M -matrix is provided by the “slic-
ing” method [20]. One sub-divides the interval [l1, l2]
where V (y) is not negligible into N sub-intervals, and
evaluates the interaction at N points y(c)

n (n = 1, . . . , N),
each being the midpoint of the corresponding sub-interval.
The original interaction is thus replaced by a sequence of
square barriers or wells, having effective strengths V (n) ≡
V0f(y(c)

n ), where the electron propagates in plane-wave
states with wave number qn =

√
2m∗ (E − V (n))/�. In

these circumstances the transfer matrix M(n|n+1) from
the nth region to region n + 1 can be straightforwardly
evaluated by matching the logarithmic derivatives at the
boundary y = yn, and written in simple, analytic terms
as a function of the wave numbers qn and qn+1 in the two
regions. The total stub transfer matrix is finally obtained
through the usual multiplication rule

M(s) =
N∏

n=0

M(n|n+1), (14)

where one has y0 = l1, q0 ≡ k, and yN = l2, qN+1 ≡ k.
Finally, it is worth to add some considerations about

the bound-state problem, and the analytical properties
of the S-matrix. If the potential in the stub supports a
bound state for E < 0, one has exponentially decaying
waves spreading through the junction both on the left and
on the right in the main wire. Replacing the real wave
number k with iχ ≡ i

√
2m∗|E|/� in equations (1), one

recognizes that, to avoid diverging waves, one must set−→cL =←−cR = 0, namely one has to exclude incoming waves
in the boundary conditions. One can then repeat the pro-
cedure followed for the scattering case, everything going
through unchanged as far as the matching conditions are
concerned, and one arrives at a secular equation which has
a non trivial solution if and only if

(3D1 +D2) = 0. (15)

Comparing equation (15) with equation (12), one has that,
in correspondence to the possible bound states of the sys-
tem, the analytic continuation of the scattering matrix has
poles on the positive imaginary axis, in complete analogy
with potential scattering theory.

Resonances of the T-stub device are associated to poles
of the S-matrix in the fourth quadrant of the complex
k-plane. Starting from equation (14), one can verify by
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inspection that the stub transfer matrix satisfies the iden-
tity

M
(s)
ij (−k∗) = M

(s)
ij (k)∗, (16)

where, as usual, A∗ represents the complex conjugate of A.
Because of equations (13), this property can be transferred
immediately to the total scattering matrix, i.e.,

S(−k∗) = S(k)∗. (17)

In other words, as in potential scattering theory, each pole
of the S-matrix in the fourth quadrant has its mirror
image in the third quadrant of the complex momentum
plane.

3 Selected numerical examples

We have determined the location of the poles of the scat-
tering matrix (12) in the complex momentum plane by
looking for the zeros of the denominator D ≡ 3D1 +D2

for a given position and strength of the potential in the
sidearm. Since the shape of the transmission coefficient as
a function of energy is essentially determined by the poles
and by the zeros of S21 [13,14], we have also looked for
the zeros of the numerator N ≡ 2(D1 + D2), which oc-
cur on the positive, real axis [14]. In both cases, the zeros
have been found through various numerical methods, in
order to check the reliability of the results, starting the
search procedure from the corresponding empty-stub k-
values. As a matter of fact, for V0 = 0, the scattering
matrix of the system can be given in a simple, analytic
form, i.e. [14],

S =



e2ikL + 1
e2ikL − 3

2
e2ikL − 1
e2ikL − 3

2
e2ikL − 1
e2ikL − 3

e2ikL + 1
e2ikL − 3


 . (18)

It is an easy task to show that the poles of this S–matrix

occur at k(p)
n =

nπ

L
− i

2L
ln 3 with n = 0, ±1, ±2, . . .,

whereas one has transmission zeros at k(o)
n =

nπ

L
. In par-

ticular, for positive n, one gets resonance poles in the
fourth quadrant of the complex momentum plane.

Most of the results we shall present refer to a potential
with a realistic, smooth profile of the Wood-Saxon (WS)
type, i.e.,

V (y) = V0




1− [1 + e(y−yc1)/a
]−1

y ≤ yc1+yc2
2 ,

[
1 + e(y−yc2)/a

]−1
y ≥ yc1+yc2

2 ,

(19)

where c1 and c2 are the inflexion points of the profile func-
tion, so that the potential is centered at yc = (yc1 +yc2)/2,
and a plays the role of a diffuseness parameter. For a→ 0,
the potential approaches a simple square well or barrier,
according to the negative or positive sign of the strength
parameter. For a �= 0, we verified that good convergence
is achieved with 10 slices.

To allow for the scaling of the problem to different stub
dimensions, all lengths will be given in terms of L, wave
numbers in terms of 1/L, while energies will be expressed
in units of ε1 = �

2π2/2m∗L2, the ground-state energy of
an infinitely deep well of width L. The diffuseness param-
eter has been chosen so as to guarantee that the potential
is negligible outside the region l̃1 ≤ ỹ ≤ l̃2, where sym-
bols with a tilde refer to adimensional quantities; we as-
sumed ã = 5× 10−3, which, for a stub 100 Å long, means
a = 0.5 Å. Both the interaction (19) and square barriers
or wells have been considered in our calculations; it turned
out that the essential features of the pole trajectories do
not change substantially in passing from a square to a
smooth potential, an indication that the transmission co-
efficient of the device does not depend in an essential way
upon the details of the potential profile.

In Figure 1 we give the trajectory of the pole with
n = 0 for a double Woods-Saxon potential centered at
ỹc = 0.2, when the strength varies from −150 ε1 up to
150 ε1. For positive, increasing strengths one observes an
anti-bound state pole moving downward along the nega-
tive imaginary axis. The pole moves more and more slowly
as Ṽ0 increases, its position becoming insensitive to the
value of the strength for Ṽ0 > 150. This “saturation” effect
in the pole’s motion can be related to the wave function
behavior in the stub. As a matter of fact, for high repul-
sive strengths, the wave function is strongly suppressed
across the potential, and is practically independent of the
potential strength.

For attractive strengths, the pole moves upward, start-
ing from the unperturbed position, and passes into the
physical (Imk > 0) region of the imaginary axis, when
Ṽ0 � −1.34. In such a situation, therefore, a first bound
state can be supported by the potential in the resonator.
For decreasing strengths, the bound-state pole moves up-
ward along the positive imaginary axis, since the electron
becomes more and more deeply bound, as it was to be
expected.

In Figure 2 we exhibit the trajectory of the first pair of
poles (n = ±1) with varying strength, for the same poten-
tial position as above. The two poles occur at symmetric
positions with respect to the imaginary axis, as required
by equation (17). For repulsive strengths (0 ≤ Ṽ0 ≤ 180),
the resonance pole moves toward the right, starting from
the unperturbed position, and approaches the real axis;
this corresponds to an increasing repulsive effect on the
corresponding transmission resonance, which is shifted
to higher and higher energies, while becoming narrower
and narrower. The pole motion can be interpreted in
the light of the behavior of the wave function in the
sidearm, evaluated at the physical energy ReẼ(p), where
Ẽ(p) = (k̃(p))2/π2 is the pole position in the complex en-
ergy plane. The wave function in the stub is quenched
through the potential barrier; a secondary maximum sur-
vives however in between ỹ = l̃2 and the outermost node
at ỹ = 1. For strong defect potentials, this trapping of the
wave function leads to a long–lived quasi-bound-state, and
hence to a very small resonance width. We shall come back
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Fig. 2. Trajectory of the n = 1 and n = −1 poles for
−135 ≤ Ṽ0 ≤ 180. The horizontal arrows exhibit the posi-
tion of the poles for Ṽ = 0, while the vertical arrows show the
motion of the poles on the imaginary axis. The potential and
the geometric parameters are the same as in Figure 1.

to this point when discussing the dependence of the poles
upon the position of the defect in the stub.

For an attractive potential, the two poles move toward
the imaginary axis, and coalesce at k̃ � 0 − 5.64i, for
Ṽ0 � −22.23 (V0 � −1250 meV for a stub 100 Å long).
As the strength decreases further, one then has two anti-
bound-state poles resulting from the “collision”, and mov-
ing on the imaginary axis in opposite directions. When
Ṽ0 � −101 the upward moving pole crosses the origin,
and emerges in the physical region as a bound state pole.
In such circumstances, the potential in the resonator is
able to support two bound states, one originating from the
zero-order pole, and the new one, coming from the low-
est resonance with n = 1. We have verified that the poles
with n = ±2,±3,±4 follow similar trajectories, the only
difference being that they merge on the imaginary axis at
increasing distances from the origin, and for more negative
values of the coupling constant. This behavior is strongly
reminiscent of what happens for s-wave scattering off an
attractive spherical well [15]. There, as the absolute value
of the strength increases, the poles move upward in pairs in
the unphysical part of the complex k-plane, and approach
the imaginary axis, where they overlap, and give rise to
poles moving in opposite directions. Differently from the
simple potential-scattering case, however, in the present
situation one has a sequence of poles at a finite distance
from the real axis also when the potential is switched off,
because of the coupling of the conducting wire with the
resonator.

As stressed in references [13,14], the actual behavior
of the device depends upon the position of both the poles
and the transmission zeros of the scattering matrix. The
motion of the latter along the real, positive axis with vary-
ing strength is simple, and reflects what one would expect
on physical grounds. For an increasingly attractive poten-

Fig. 3. Transmission coefficient T as a function of the energy
Ẽ in correspondence to the strength values Ṽ0 = 5 (dashed
line) and Ṽ0 = 50 (solid line). The potential is the same as in
Figure 1.

tial in the sidearm, the zeros move toward lower energies,
until they reach the scattering threshold at Ẽ = 0; for a
repulsive interaction, they are shifted at higher energies.
What really matters, as far as the transmission properties
of the system are concerned, is the relative distance be-
tween the corresponding zeros and poles. As the strength
Ṽ0 increases, the first three poles approach more and more
closely the corresponding zero, whereas the fourth pole
moves far away from its associated zero. This fact has
striking consequences for the transmission coefficient T of
the device, as illustrated in Figure 3, where we plot T as
a function of the energy Ẽ for Ṽ0 = 5 and Ṽ0 = 50. In
correspondence to the stronger interaction, the “collapse”
of the first three zero-pole pairs gives rise to a shrinking
of the first three resonance dips, with respect to the weak-
interacting case.

As Figure 3 clearly exhibits, the dips in the trans-
mission coefficient are characterized by a more or less
pronounced asymmetry. These line shapes are usually
parametrized in terms of the Fano function [12,21]

TF = T0
(ε+ q)2

1 + ε2
, (20)

where T0 is the amplitude of the Fano resonance, ε ≡
(Ẽ−Ẽ(R))/Γ̃ represents the reduced or normalized energy,
and we have written the pole location Ẽ(p) in the energy
plane as Ẽ(p) = Ẽ(R)−iΓ̃ . The Fano parameter q is a mea-
sure for the ratio between the resonant and non-resonant
transmission amplitudes, and determines the asymmetry
of the line shape. For one-dimensional systems, there is
a simple relation between q and the positions Ẽ(R) − iΓ̃ ,
Ẽ(o) of poles and zeros in the energy plane, namely [13]

q =
Ẽ(R) − Ẽ(o)

Γ̃
. (21)
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Fig. 4. Fano parameter q (upper panel) and width Γ̃ (lower
panel) as functions of the adimensional strength Ṽ0 for the first
four transmission resonances. The potential is the same as in
Figure 1.

With reference to Figure 3, for Ṽ0 = 5 the Fano parame-
ters of the four resonances one encounters with increasing
energy are q1 = −0.264, q2 = 0.072, q3 = 0.133, and
q4 = −0.029, respectively, the corresponding widths be-
ing Γ̃1 = 0.111, Γ̃2 = 0.415, Γ̃3 = 1.167, and Γ̃4 = 1.830.
When the strength Ṽ0 is increased up to 50, the widths
of the first three resonances reduce to Γ̃1 = 0.001, Γ̃2 =
0.007, and Γ̃3 = 0.042, whereas the width of the fourth,
higher-energy resonance has increased up to Γ̃4 = 7.843.
As for the Fano parameters, they generally increase in ab-
solute value, their magnitudes being now q1 = −0.520,
q2 = −0.018, q3 = 0.452, and q4 = 0.196.

We performed a systematic analysis of the dependence
of q upon the strength Ṽ0 of the defect. The results of the
calculations are given in the upper panel of Figure 4 for
the first four resonances.

Apart from a rather limited region, where the asymme-
try parameters move away from their initial zero values as
the interaction is switched on, one finds a rather mild de-
pendence upon the strength for Ṽ0 > 20. This fact can be
easily understood in the light of equation (21). When the
interaction gets stronger and stronger, the widths of the
first three dips vanish, whereas the width of the fourth res-
onance increases, as the lower panel in Figure 4 exhibits.
This strength dependence is to a large extent compensated
by a similar change of the zero-pole distances, so that a
smooth variation of q with Ṽ0 emerges.

Fig. 5. Trajectories of the n = 1 pole in the complex k-plane
for different positions of the defect. The pole is plotted in steps
∆Ṽ0 = 1, with 0 ≤ Ṽ0 ≤ 90.

Let us finally consider the pole behavior in the complex
k-plane, when the position of the defect inside the stub is
varied. For an attractive interaction, the scenario is essen-
tially the same as above; in general, the poles in the fourth
quadrant and their mirror images in the third move toward
the negative imaginary axis, the main difference being that
the point where they merge together occurs for increasing
values of Imk̃, i.e., for n = 1 the position of the collision
point ranges from Imk̃ � −5.8 up to Imk̃ � −1.8, in cor-
respondence to l̃1 = 0.1, l̃2 = 0.3, and l̃1 = 0.7 , l̃2 = 0.9,
respectively. Similarly, one finds that the n = ±2 poles
meet at Imk̃ � −6.8, when l̃1 = 0.1, l̃2 = 0.3, whereas
they collide at Imk̃ � −2.1 for l̃1 = 0.7, l̃2 = 0.9. After
the collision, one observes again two poles moving in op-
posite directions on the imaginary axis as the potential
gets more and more attractive, until the upward moving
pole enters the physical region and a new bound state ap-
pears. It is worth to stress that there may be remarkable
exceptions to this general trend. For instance, when the
attractive potential is placed just on top of the junction
point, the first-order (n = 1) pole never reaches the imag-
inary axis; on the contrary, it moves counterclockwise in
the fourth quadrant, along a spiraling trajectory, whereas
the n = ±2 poles follow the general trend, meeting each
other on the negative imaginary axis, even when l̃1 = 0.

In correspondence to positive strengths, the pole tra-
jectories are quite sensitive to the defect position inside
the resonator. This is illustrated in Figure 5, where we
plot the trajectory of the n = 1 pole with varying Ṽ0, for
different values of l̃1. As the defect is displaced away from
the junction, the pole no longer approaches the real axis
and, when the defect is contained in the outermost part
of the stub, it moves away from the physical region.

The dependence of the pole trajectory upon the po-
sition of the potential can be explained through a wave
function argument. In Figure 6 we give the square modulus



G. Cattapan et al.: S-matrix pole trajectories in quantum wires with resonantly coupled cavities 393

Fig. 6. The square modulus of the stub wave function for
the empty stub (full line), and in presence of a potential with
Ṽ0 = 9, for l̃1 = 0.1, l̃2 = 0.3 (dashed line), and l̃1 = 0.7,
l̃2 = 0.9 (short-dashed line). In all cases the wave function
has been evaluated in correspondence to the resonance energy

ReE
(p)
1 .

of the resonant wave function in the stub for Ṽ0 = 9, in
correspondence with two different positions of the defect,
l̃1 = 0.1 and l̃2 = 0.3 (dashed line), and l̃1 = 0.7 and
l̃2 = 0.9 (short-dashed line). For comparison, the resonant
wave function for the empty stub is also given (full line).
With the repulsive potential switched on, the wave func-
tion is quenched in correspondence to the defect region, as
we already observed above; when the potential is located
near the origin of the stub, the wave function exhibits a
maximum in between l̃2 and the end of the stub, a signal
of its trapping inside the resonator; when the potential is
centered in the outermost part of the stub, on the other
hand, the wave function exhibits only a decreasing tail be-
yond l̃2, and the electron is less trapped inside the stub.
As a consequence, for the same repulsive strength, one can
have a narrow transmission resonance, or a broad struc-
ture in the conductivity, depending upon the position of
the potential.

Finally, we observe that a quantum circuit quite sim-
ilar to the device studied in the present paper has been
considered in reference [22], to model a quantum connect-
ing wire with a side-coupled quantum dot. In reference [22]
the T junction was coupled to a tunable resonator con-
sisting of a tunnel barrier and a perfect reflector. We ver-
ified that, displacing in our device the potential to the
outermost position in the sidearm, one gets Fano trans-
mission dips all having a negative asymmetry parameter,
consistently with reference [22]. Moreover, in this configu-
ration the q parameters turn out to be almost independent
upon the strength and the shape (square or smooth) of
the potential, an indication that the actual device can be
modelled by this simple quantum circuit, without specific
assumptions about its features.

4 Conclusions

We have studied the trajectories in the complex momen-
tum plane of the poles of the scattering matrix, for a one-
dimensional wire which communicates with a resonator
containing a defect potential. We looked at the depen-
dence of the zeros and singularities upon both the strength
of the interaction, and its position inside the sidearm. For
an attractive interaction, we found a behavior reminiscent
of what is found for the standard potential scattering sit-
uation; the poles in the fourth and third quadrants move
in pairs from the unperturbed positions, and approach the
negative imaginary axis, where they merge for a critical
value of the strength. As the interaction becomes more
and more attractive, one then has two poles moving in
opposite directions along the imaginary axis, the upward
moving pole entering finally the physical part of the imag-
inary axis, in correspondence to a new bound state of the
system. For repulsive potentials, the resonance pole tra-
jectories depend in a remarkable way upon the position
of the defect in the resonator, and can either approach
the positive real axis or move away from it in the fourth
quadrant. This can be traced back to the trapping or leak-
ing of the electron wave function in the sidearm, a phe-
nomenon which is extremely sensitive to the defect loca-
tion. The actual shape of the transmission coefficient as a
function of the energy depends in principle upon the rel-
ative distances of the zero-pole pairs. As far as the Fano
asymmetry parameter is concerned, however, there is to
some extent a compensation between the zero-pole dis-
tances and the corresponding widths Γ̃ , resulting in an
overall mild dependence of q upon Ṽ0. Another problem
which would deserve a specific analysis is the possible in-
terference among the resonances. That this could actually
be the case is signaled by Figure 3, where one observes an
increase of the width of the fourth resonance with increas-
ing strength. Energy dependent effects in the overlapping
regime can be studied most efficiently through the eigen-
functions of the Hamiltonian of the system, to calculate
the coupling matrix elements between system and environ-
ment [23]. This kind of analysis, while beyond the scope
of the present paper, is presently under consideration.
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